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Every Bureaucrat’s Dream:

Number-Crunching beats Reasoning

The answer to the

Ultimate Question of Life, The Universe, and Everything

from the supercomputer, Deep Thought, specially built for this

purpose. It took Deep Thought 71
2

million years to compute

and check the answer.

Here it is:

42

After D. Adams, The Hitchhiker's Guide to the Galaxy, 1978
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Ada Lovelace, 1815 { 1852

Ada is looking forward to move to Italy to enrol in some Italian

university. She is well known to enjoy number-crunching, but

also | and perhaps even more | logic and reasoning. How can

she best take advantage of the newspaper's ranking?
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Babbage's Analytical Engine, 1834{1871

Aware that one person's number-crunching may be another's

nonsense, she decides to go for logic and reasoning instead. She

starts writing down her desiderata.
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Ada's ideal university U should satisfy the following.

U enjoys substantial international mobility.

U has considerable reputation for graduate education.

U invests much more in research than in undergraduate

teaching.

. . .

Ada ends up being puzzled by her own list, though. If, as that

fellow countryman of hers maintains, reasoning is nothing but

computing with 0 and 1 according to peculiar arithmetic laws

| then how does one attach such numbers to vague sentences

such as the above?

It seems to Ada that Italy is beyond reason indeed.
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Late(x),	
   like	
   Red(x)	
   or	
   Tall(x),	
   is	
   a	
   vague	
   (monadic)	
  
predicate.	
   Instantiations	
   such	
   as	
   Tall(VM)	
   yield	
   vague	
  
propositions.	
  Vague	
  predicates	
  have	
  been	
  given	
  much	
  attention	
  by	
  
the	
   analytic	
   philosophers,	
   beginning	
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   a	
   paper	
   by	
   Bertrand	
  
Russell	
  in	
  the	
  Twenties.	
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of	
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(FV1) R admits borderline cases over the intended domain of interpretation D,
i.e. there are instantiations of R(x) by (a term naming a constant) c ⇥ D
such that it is unclear whether R(c) holds or its negation ¬R(c) does.

(FV2) R lacks sharp boundaries over the intended domain of interpretation D,
i.e. there is no clearly defined boundary separating the extension of R(·)
from its anti-extension.

(FV3) R is susceptible to a Sorites series over the intended domain of interpre-
tation D, i.e. there are instantiations of R(x) by c1, . . . , cn ⇥ D such that
it is clear that R(c1) holds, it is clear that R(cn) does not hold, and it
seems at least plausible that if R(ci) holds then so does R(ci+1), for each
i ⇥ {1, . . . , n � 1}.
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Shop sign

This tutorial is devoted to the modest aim of solving Ada's

problem. For this, we are going to develop the (propositional)

logic of (certain) vague predicates, concentrating on reasoning

rather than number-crunching.



Prologue Vagueness True, Truer, Much Truer Axiomatisation Intermezzo

Clear Assumptions about Vague Predicates

Assumption I

Each vague predicate has a well-de�ned extension.

The assumption does not entail that the predicate is precise, or

that it does not admit borderline cases, etc. Indeed, given any

x , it is a matter of classical logic that:

Either it is the case that Tall(x ), i.e. x is a clear,

indisputable case of a tall individual;

Or it is not the case that Tall(x ), i.e. x is not a clear,

indisputable case of a tall individual.

Consequently, one cannot assert a vague predicate tentatively,

or to a degree.
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In the Begri�sschrift, Frege introduced the sign ` as a

compound formation:

− the content stroke

| the judgement stroke

` the assertion sign

` α means: α (assertion of).

Hence, by

` Tall(x )

we mean: (it is asserted that) x is a clear, indisputable case of

tallness.

Comment. There are formal systems, such as Pavelka's logic,

where inference is indexed by a degree. But it is unclear

whether one can make sense at all of the idea of \asserting (or

assuming) a proposition to a degree", and even less of the idea

of \deducing α from β to a degree".
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Assumption II

We only consider vague predicates admitting an antonym.

E.g., Tall{Short, Near{Far, etc.

Assumptions I & II directly lead to 3 notions of negation:

Predicate Extension

−Tall Set-theoretic complement of the extension of Tall

¬Tall Extension of the opposite predicate Short

∼Tall Extension of the predicate non-Tall
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Assumption II

We only consider vague predicates admitting an antonym.

E.g., Tall{Short, Near{Far, etc.

Assumptions I & II directly lead to 3 notions of negation:

Predicate Meaning

−Tall Not clearly Tall

¬Tall Short

∼Tall Clearly non-Tall

Assumption III

We only consider the negation connective ¬.
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Tall and Red are fundamentally di�erent vague predicates.

Tall has a natural antonymic, or opposite, or contrary

predicate, namely, Short. In symbols,

¬Tall(x ) ≡ (¬Tall)(x ) ≡ Short(x ).

Similarly: Young, Beautiful, etc.

Red does not have a natural contrary. There is no name for

opposite-to-Red in the colour spectrum. Similarly: Cute,

Nice, etc. Hence:

¬Red just doesn't make sense.
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The distinction above is strictly a matter of logic, not of

linguistic usage or what have you.

The negation − must obey the Double Negation Law

Indeed, − behaves like a classical negation:

The extension of Tall is the set of individuals which are a

clear, indisputable case of tallness.

The extension of −Tall is the set of individuals which are

not a clear, indisputable case of tallness.

Hence, the extension of −(−Tall) coincides with the

extension of Tall: set-theoretic complement is idempotent.
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The distinction above is strictly a matter of logic, not of

linguistic usage or what have you.

The negation ∼ must fail the Double Negation Law

Indeed, ∼ behaves like an Intuitionistic pseudo-complement:

The extension of Red is the set of objects which are a clear,

indisputable case of redness.

The extension of ∼Red is the set of objects which are a

clear, indisputable case of non-redness.

Hence, the extension of ∼ (∼Red) is the set of objects which

do not qualify as a clear case of non-redness; but in general

they will not qualify as a clear case of redness, either.
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Let us take stock:

¬Tall applies to anything that is clearly opposite to tall,

i.e. is clearly short.

¬Red just doesn't make sense, because there is no opposite

to redness.

We henceforth restrict attention to predicates such as Tall,

which admit of antonyms such as ¬Tall ≡ Short. We only

consider the negation ¬.

We have made some assumptions about a unary connective,

negation. The next key issue now is:

What binary connectives are basic for vague predicates?
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True, Truer, Much Truer

Ra�aello Sanzio, La Scuola di Atene, ca. 1509.
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E. Casari, Comparative logic, Synthese, 1987.

ETTORE CASARI 

COMPARATIVE LOGICS 

1. INTRODUCTION 

Comparative Logic was created by Aristotle at the very beginnings of 

logic. In the Topics he developed, in particular, a highly satisfactory 
theory of the nine kinds of propositions which arise by crossing 
comparisons of majority, minority and equality (jjuaXXov, tjttov, 
?|ao?<?s) with situations in which 'one is said of two (evos irepi 8?o 

\eyo\J?vov?)\ 'two are said of one (Suotv ircpi evos X 70|A V?>v)' and 
'two are said of two (8uotv irepl 8uo \ yoyAvi?v)\ i.e., 

x is more A than y; 
x is less A than y; 
x is as much A as y; 
x is more A than B; 
x is less A than B; 
x is as much A as B; 
x is more A than y is B; 
x is less A than y is B; 
x is as much A as y is B. 

Although it is possible to account for some significant features of the 

logical mechanism of comparison by means of operators which send, 
for example, the monadic predicate A into the relation A>(A>(jc, y): x 
is more A than y), it turns out that a much more comprehensive and 

satisfactory treatment may be attained by going over to a proposi 
tional approach to the whole question. 

The leading ideas of such an approach are the following. Pro 

positions are indeed true or false and therefore their compositions by 
means of -i, a, v, ->, V and 3 are governed by classical logic, but they 
are not necessarily all true (or false) in the same way; there are 

degrees of truth and falsity. Such degrees are (partially) ordered in 
such a way that all degrees of falsity precede all degrees of truth and 
the world of falsity degrees is the specular image, via negation, of the 

world of truth degrees. Such a situation may be accounted for by 

Synthese 73 (1987) 421-449. 
? 1987 by D. Reidel Publishing Company 

This content downloaded  on Mon, 28 Jan 2013 16:27:31 PM
All use subject to JSTOR Terms and Conditions
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Aristotle's example, in the Topics, of inference with

comparatives of comparatives.

P1. x is more T than z .

P2. y is more T than z .

P3. x is more (more T than z ) than (that by which y is more

T than z ).

C. x is more T than y .

For instance:

P1. Ada is more tall than Carolina.

P2. Blaise is more tall than Carolina.

P3. Ada is more (more tall than Carolina) than (that by which

Blaise is more tall than Carolina).

C. Ada is more tall than Blaise.
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Note that as we step up from the subsentential to the sentential

level, to model the Aristotelian

x is more T than z

with a single connective independent of T , it seems

unavoidable to move on to the sentence

T (x ) is more true than T (z ).

Key Fact

The comparison connective

α is more true than β

produces a classical proposition out of the given α and β.

Hence the connective is more true than cannot play a

fundamental rôle in the logic of vague predicates.
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A Standard Mistake

Many-valued logics (after H�ajek) are logics of comparative truth

wherein the implication connective

α→ β

is read

α is less true than β.

This is simply untenable.

Proper Reformulation

Many-valued logics (after H�ajek) are logics of comparative truth

wherein the assertion

` α→ β

is read

It is the case that α is less true than β.
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Standard account of meaning of a proposition/predicate as its

truth conditions:

[. . . ] to grasp a thought is to know the conditions

for it to be true.

M. Dummett, 1976

E.g., you know what Prime(x ) means as soon as you can tell a

prime number when you see it. Compare:

Just Wrong (?)

You know what Tall(x ) means as soon as you can tell a (clearly,

indisputably) tall person when you see one.

For, what about a tallish, though not indisputably tall person?

And even an indisputably short person? You may perfectly

meet (?) and yet be completely in the dark as to whether a

clear, indisputable case of a short person indeed is short. That's

no grasping of Tall(x ), on any sensible account.
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Am I just overstating the fact that vague predicates are not

bivalent?

By no means. Lack of bivalence need not imply that

truth conditions fail to determine meaning in the sense above.

Example

In Intuitionistic logic, the Lindenbaum-Tarski equivalence class

of any proposition α is uniquely determined by the collection of

(intuitionistic) valuations that make α true.

(Mathematically, this is precisely why in Intuitionistic logic,

like in classical logic, one can develop Stone-Esakia-Priestley

duality for Heyting algebras in the extensional language of

clopen upper sets, and give up functions, i.e. Fregean \courses

of values".)

Let us take stock: Only in G�odel-Dummett logic can the

implication be plainly read as \less true than". Cf. S. Aguzzoli,

VM, Two principles in many-valued logic, dedicated to Petr

H�ajek, forthcoming.
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So what can we resort to if \more true than" won't do?

Aristotle's example, in the Topics, of inference with

comparatives of comparatives.

P1. x is more T than z .

P2. y is more T than z .

P3. x is more (more T than z ) than (that by which y is more

T than z ).

C. x is more T than y .

A propositional translation of Aristotle's example:

P1. T (x ) is more true than T (z ).

P2. T (y) is more true than T (z ).

P3. (T (x ) is

much

more true than T (z )) is more true than

(T (y) is

much

more true than T (z )).

C. T (x ) is more true than T (y).
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α B β means: α is much more true than β

For example,

Tall(x ) B Young(y)

means:

x is much more a case of tallness than y is a case of youth.

Assumption IV

All vague propositions/predicates may be combined through B
to yield new compound vague propositions/predicates.

In particular, this means that α B β has again a well-de�ned

extension, an antonym, and a well-de�ned anti-extension

(Assumptions I{III).
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Assumption V (Truth conditions of B)

` α B β if, and only if, ` α and ` ¬β.

Consider the sentence

Frege is much more intelligent than he is handsome.

This is a vague proposition of the from α B β. What does one

mean when one asserts it, i.e. when

` α B β ?

Recalling our Assumption I, the only way to make logical sense

of such an assertion is to interpret it as

Frege is intelligent, and Frege is ugly, or

` α and ` ¬β.
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Assumption V (Truth conditions of B)

` α B β if, and only if, ` α and ` ¬β.

Indeed, anything weaker than that will not attain assertoric

force: it will necessarily be true to a non-maximal degree,

which is incompatible with Assumption I.

To see this, assume that in this world, Frege is actually full-on

intelligent, and somewhat ugly, though not a clear, indisputable

case of ugliness.

Then there is a possible (=logically consistent) world wherein

Frege is full-on intelligent, and full-on ugly: total ugliness

coupled with total intelligence is not an inconsistent prospect.

In this possible world, then, α B β must be true to a higher

degree than it is in the world we initially considered, whence

α B β could not have been full-on true there.
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Our last assumption subsumes Assumption V:

Assumption VI (Course of Values of B)

α B β is the more true, the more α is truer than β.

This expresses the crucial idea of a correlation between:

The gap between the degree of truth of α and that of β;

and

The degree of truth of α B β.

This is the closest we get to the outright request that degrees of

truth are magnitudes to be combined by arithmetic operations.

We are not quite asking that much, though. We are merely

voicing the intuition that if, say, α is more true than β, then if

the degree of truth of α grows while that of β stays constant, so

does grow the degree of truth of α B β.
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We can �nally think clearly enough, and argue about, formul�

in the language

¬,B,>.

First, it is clear that ¬> is the logical constant falsum, which

we abbreviate ⊥. Next:

“Less true than”

` ¬(α B β) if, and only if, α is no more true than β.

For, if L.H.S. holds then it is full-on false that α is much more

true than β. If we had \α more true than β" true to some

degree, then we should have α B β true, albeit possibly to a

comparably small degree (Assumption VI). Hence \α no more

true than β" holds.

Conversely, if \α no more true than β" holds, clearly α B β is

full-on false, hence ` ¬(α B β).
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What about conjunctions and disjunctions?

Consider the formula:

α B (α B β). (?)

If α is less true than β, α B β is full-on false, and α B ⊥ is just

as true as α. Hence in this case (?) agrees with α.

If, on the other hand, α is more true than β, then Assumption

VI entails that the degree of truth of (?) is correlated, or

\directly proportional", to that of β: hence it is reasonable, in

this case, to claim that (?) agrees with β.

Hence the degree of truth of (?) is the minimum of the degree

of truths of α and β.

Conjunction

We identify α B (α B β) with the conjunction of α and β,

written α∧ β. Observe: ` α∧ β i� ` α and ` β.
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Disjunction is de�ned through the De Morgan Laws.

As an example of the foregoing:

Prelinearity

For any α and β we have:

`¬ ( (α B β)∧ (β B α) ) .

This is a version of the standard prelinearity axiom in

many-valued logic: ` (α→ β)∨ (β→ α).

In the present version, it states the obvious: it is always full-on

false that α is much more true than β, and at the same time β

is much more true than α.

We now have a language, and an intended semantics. It's time

to talk about inference.
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Axiomatisation

Jan  Lukasiewicz, 1878{1956.
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How do we perform inference with vague propositions?

Suppose α :=\Ada is short", and β :=\Ada is fat". Suppose

further:

` ¬(α B β), or ` α 6 β.

That is, \Ada is short is less true than Ada is fat".

Finally, suppose ` ¬β. That is, \Ada is thin".

Then we can infer: ¬α, that is, \Ada is tall".

Under our assumptions, this is a perfectly valid inference. It is

no less grounded than a classical inference. It is a form of

modus tollens:

` α→ β ` ¬β

` ¬α
(mt)
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Under our assumptions, this is a perfectly valid inference. It is

no less grounded than a classical inference. It is a form of

modus tollens:

` α→ β ` ¬β

` ¬α
(mt)
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Only deduction rule we use: vague modus tollens.

` ¬(α B β) ` ¬β

` ¬α
(vmt)

` α 6 β ` ¬β

` ¬α
(vmt)

Now we declare that a formula α in the language {¬,B,>} is

provable if there exists a proof of α, that is, a �nite sequence of

formul� α1, . . . , αl a such that:

αl = α.

Each αi , i < l is either an axiom, or is obtainable from αj

and αk , j , k < i , via an application of vague modus

tollens.

So, what are the axioms?
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Ex falso quodlibet

¬(α B > )

α 6 >

Not much to say here: obvious.
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A fortiori

α B β 6 α

For that by which α is truer than β cannot be less than the

degree of truth of α itself. (In the extreme case, β ≡ ⊥ and

α B ⊥ ≡ α 6 α.)
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Transitivity of B

(γ B α) B (γ B β) 6 β B α

This is best understood through a lengthy case analysis (3

propositions). It is to be thought of a consequence essentially of

our crucial Assumption VI about correlation: γ B α and γ B β
compare in respect of truth value in the opposite manner as α

compares to β, hence the R.H.S. has them reversed. For

example, if α is more true than β, then R.H.S. is full-on false,

so L.H.S. should be, too. And indeed, assuming γ is more true

than both α and β, that by which γ is truer than α is smaller

than that by which γ is truer than β.
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Contraposition

α B β 6 ¬β B ¬α

Not much to say here. By our interpretation of negation and

symmetry, think equality in place of 6.
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Conjunction is commutative

α B (α B β) 6 β B (β B α)

Once we accept that L.H.S. is α∧β, and hence R.H.S. is β∧α,

not much to say here: conjunction is obviously commutative

(again, think equality in place of 6).
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Axiom system.

(A0) ¬(α B > ) Ex falso quodlibet

(A1) α B β 6 α A fortiori

(A2) (γ B α) B (γ B β) 6 β B α Transitivity of B

(A3) α B (α B β) 6 β B (β B α) Conjunction is commutative

(A4) α B β 6 ¬β B ¬α Contraposition

α∧ β ≡ α B (α B β)

Deduction rule.

(R1) α6β ¬β
¬α Vague Modus Tollens.



Prologue Vagueness True, Truer, Much Truer Axiomatisation Intermezzo

This Hilbert-style system de�nes  Lukasiewicz logic.

The standard axiomatisation, essentially due to  Lukasiewicz

himself, uses the language ¬,→,>. Ours is \written

backwards" with respect to the standard one.

For example, our axiom de�ning conjunction standardly

becomes

((α→ β) → β) → ((β→ α) → α)

and now states that disjunction is commutative.

We have:

α B β ≡ ¬(α→ β).

The connective that I am denoting B is usually denoted 	.

I am not just trying to be di�erent: there are deep

mathematical reasons why our \backwards" version is

semantically more natural { cf. A. Pedrini's and D. McNeill's

talks on  Lukasiewicz and Intuitionism.



Prologue Vagueness True, Truer, Much Truer Axiomatisation Intermezzo

This Hilbert-style system de�nes  Lukasiewicz logic.

The standard axiomatisation, essentially due to  Lukasiewicz

himself, uses the language ¬,→,>. Ours is \written

backwards" with respect to the standard one.

For example, our axiom de�ning conjunction standardly

becomes

((α→ β) → β) → ((β→ α) → α)

and now states that disjunction is commutative.

We have:

α B β ≡ ¬(α→ β).

The connective that I am denoting B is usually denoted 	.

I am not just trying to be di�erent: there are deep

mathematical reasons why our \backwards" version is

semantically more natural { cf. A. Pedrini's and D. McNeill's

talks on  Lukasiewicz and Intuitionism.



Prologue Vagueness True, Truer, Much Truer Axiomatisation Intermezzo

This Hilbert-style system de�nes  Lukasiewicz logic.

The standard axiomatisation, essentially due to  Lukasiewicz

himself, uses the language ¬,→,>. Ours is \written

backwards" with respect to the standard one.

For example, our axiom de�ning conjunction standardly

becomes

((α→ β) → β) → ((β→ α) → α)

and now states that disjunction is commutative.

We have:

α B β ≡ ¬(α→ β).

The connective that I am denoting B is usually denoted 	.

I am not just trying to be di�erent: there are deep

mathematical reasons why our \backwards" version is

semantically more natural { cf. A. Pedrini's and D. McNeill's

talks on  Lukasiewicz and Intuitionism.



Prologue Vagueness True, Truer, Much Truer Axiomatisation Intermezzo

This Hilbert-style system de�nes  Lukasiewicz logic.

The standard axiomatisation, essentially due to  Lukasiewicz

himself, uses the language ¬,→,>. Ours is \written

backwards" with respect to the standard one.

For example, our axiom de�ning conjunction standardly

becomes

((α→ β) → β) → ((β→ α) → α)

and now states that disjunction is commutative.

We have:

α B β ≡ ¬(α→ β).

The connective that I am denoting B is usually denoted 	.

I am not just trying to be di�erent: there are deep

mathematical reasons why our \backwards" version is

semantically more natural { cf. A. Pedrini's and D. McNeill's

talks on  Lukasiewicz and Intuitionism.



Prologue Vagueness True, Truer, Much Truer Axiomatisation Intermezzo

This Hilbert-style system de�nes  Lukasiewicz logic.

The standard axiomatisation, essentially due to  Lukasiewicz

himself, uses the language ¬,→,>. Ours is \written

backwards" with respect to the standard one.

For example, our axiom de�ning conjunction standardly

becomes

((α→ β) → β) → ((β→ α) → α)

and now states that disjunction is commutative.

We have:

α B β ≡ ¬(α→ β).

The connective that I am denoting B is usually denoted 	.

I am not just trying to be di�erent: there are deep

mathematical reasons why our \backwards" version is

semantically more natural { cf. A. Pedrini's and D. McNeill's

talks on  Lukasiewicz and Intuitionism.



Prologue Vagueness True, Truer, Much Truer Axiomatisation Intermezzo

Intermezzo

Ada Lovelace, 1815 { 1852

By now Ada is beginning to feel a little more optimistic about

the possibility of applying reasoning to her problem.
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But while her list of desiderata:

U enjoys substantial international mobility.

U has considerable reputation for graduate education.

U invests much more in research than in undergraduate

teaching.

. . .

seems now less foreign to inference, Ada is still not clear about

how she could compute a solution to her problem. Can she still

use 0's and 1's, like her fellow countryman suggested? If not,

then what should she attach to sentences in place of 0's and 1's?

In the second and �nal part of this tutorial we will answer these

questions, and we will eventually run a computer program that

is able to compute a solution to Ada's problem, when properly

fed her list of desiderata.
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Thank you for your attention.
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